对于铁路路梁建筑,由于制动力影响较大,固定支座和活动支座的布置应根据如下原则:对桥跨结构而言,好使梁的上弦在制动力的感化下受压,并能对消有部分竖向荷载上弦发生活力发火的拉力;对桥墩而言,好让制动力的感化偏向指向桥墩核心,并使桥墩顶混凝土或浆砌片石受压,在制动力感化下受压而不是受拉。
从技术发展历程来看,橡胶支座经历了从普通板式橡胶支座到盆式橡胶支座,再到四氟乙烯板式橡胶支座的不断演进过程,其力学性能和应用范围得到了持续拓展和完善。
解如下:病害症状:建筑支座异常变形产生原因:大多因为落梁时不够平稳,建筑支座存在较大的初始剪切变形。今天,一种防震减灾的基础隔震新技术应用于建筑中,可以使房屋建筑在大地震中保持完好无损、安全可靠。今天就给大家做一个简单的介绍。金属阻尼器的耗能机理是通过金属元件的弹塑性变形来耗能。仅固定支座各方向和单向活动支座非滑移方向的水平力由原支座设计承载力的10%提高至20%。进场检验APPROACHINSPECTION进行所用千斤顶、油泵的配套标定。进入20世纪80年代时程分析法的应用使得隔震设计成为可能。进入施工现场戴好安全帽,穿戴规定地劳动保护用具;近来在工程上也获得了特殊用途。
QPZ系列盆式橡胶支座分类纵向活动橡胶支座代号为ZX;多向活动支座代号为DX;固定支座代号为GD2.适用温度范围常温型支座:适用于-25℃~+60℃;耐寒型支座:适用于-40℃~+40℃代号为F3.技术性能支座竖向转角≥40′竖向承载力1000-50000KN共分28级,支座可承受的水平承载力为竖向的10%支座位移量可根据工程需要变更,定货时用户提出要求即可4.QPZ系列盆式橡胶支座构造特点:活动支座不锈钢板和聚四氟乙烯滑动面采用硅脂润滑,可降低摩擦阻力。
正常使用状态下,隔震支座需严格控制压应力,避免橡胶提前失去弹性:甲类建筑压应力不得超过 10MPa,乙类建筑不得超过 12MPa,丙类建筑不得超过 15MPa。
隔震支座的定义:隔震支座是一种特殊的建筑结构组件,设计用于在地震发生时隔离上部建筑结构与地面的直接连接,通过其自身的变形和耗能特性,吸收和分散地震能量,从而减少地震对建筑的影响。
公路及各类建筑在投入运营一段时间后,质量缺陷容易逐渐显露,而支座问题作为建筑工程中常见的早期病害,已引起行业内的广泛重视。影响板式橡胶支座质量的因素众多,在采购与使用过程中,需重点关注原材料品质、生产工艺精度、结构设计合理性等关键环节,从源头把控支座质量。
压缩变形:支座的竖向压缩变形不应大于支座总高度的2%。

橡胶支座的老化性能竖向刚度先测定被试橡胶支座的竖向刚度、水平刚度、等效黏滞阻尼比;再将橡胶支座置于100℃的恒温箱内185H(或相当于20℃X60年的等效温度和等效时间)后取出,冷却至自然室温,再重新测定橡胶支座的竖向刚度、水平刚度、等效黏滞阻尼比及水平极限变形能力。
橡胶支座安装完毕后,如果发现以下情况,应该及时做出调整:个别支座落空,出现不均匀受力支座发生较大的初始剪切变形,造成支座偏压严重,局部受压,侧面鼓出异常,而局部落空调整方法一般用千斤顶顶起梁端,在支座上下表面铺涂一层水泥砂浆。
板式橡胶支座结构与特性:由多层橡胶片与薄钢板镶嵌、粘合、硫化而成。具备足够的竖向刚度以承受垂直荷载,能可靠传递上部结构反力至墩台。同时拥有良好的弹性以适应梁端转动,并依靠橡胶的剪切变形提供较大的水平位移能力。
耐久性好,耐高温,力学性能受周围环境温度影响小。
固定型支座常规状态下位移量不得超过支座设计正常使用剪应变,地震状态下位移量不得超过支座设计地震使用剪应变,这是保证支座正常工作的重要指标。
LRB500隔震支座的构造,LRB500隔震支座由以下几个部分组成:
由于TPZ、GPZ等系列橡胶支座均为两侧导槽式活动橡胶支座,当在多跨连续上使用时,由于日照温度应力引起梁体的侧弯,在两侧导槽式单向活动支座易产生约束力,而中间导槽式单向活动支座在梁体产生侧弯时,中间导槽可带动支座中间钢衬板做少量转动。
墩高:墩高对摩擦摆支座的墩底弯矩减隔震效果有较大影响,较低墩高的墩底弯矩减震率可能更好,同时墩高对支座的最大水平滑动位移也有一定影响,墩高较低时最大水平滑动位移相对较小。

盆式橡胶支座安装过程中,底部及锚栓孔处空隙需采用重力灌浆方式灌注。规范的灌浆操作应从支座中心部位开始,逐步向四周扩散注浆,直至从模板与支座底板周边的间隙处可清晰观察到灌浆材料完全充盈。这种灌注顺序确保了气体有效排出,避免空鼓缺陷。
在混凝土养护期内,禁止一切车辆通行日前,记者在北京市哑巴河桥现场看到26个黄色双控液压同步顶升配备在计算机控制下得胜将长22米、宽19米的建筑整体顶起,在不影响路面交通正常运行的前提下,北京市市政工程管理处桥通所施工人员顺利完成建筑支座的更换。
全面调查,经综合考虑必要性、有效性、经济性、可行性和安全性确定处理方案,而且处理方案要有针对性;2.对各类材料,包括新更换的建筑橡胶支座质量等要加强检验;安装精度仍然要符合规范规定;3.施工安全性应考虑周全,统一指挥,施工过程中应有专人负责监控,确保人身和设备的安全;4.采用顶升法时,要认真做好测量、观察、记录工作。
隔震橡胶支座器橡胶支座它是由多层橡胶和钢板相互叠加而成,在施加竖向荷载时,由于橡胶受到钢板的约束,不会产生很大的横向变形,即具有很强的抗压能力;水平方向有很大的变形能力,在地震作用下,橡胶垫可以隔离水平方向的运动分量。
管线柔性连接:所有穿过隔震层的管线(包括给排水、电气和暖通专业的管线与配管),必须采用可靠的柔性连接方式,或采取其他行之有效的措施,以适应隔震层在罕遇地震发生时可能产生的巨大水平位移。
铅芯橡胶支座:在普通橡胶支座中心竖向压入铅芯。铅芯利用其塑性变形能力,提供优异的耗能(阻尼)作用,广泛应用于结构消能减震领域。在抗震与抗风设计中,它既能提供必要的水平刚度,又能高效消耗输入结构的能量。
包括减震支座、抗震支座、隔震支座和拉力支座等。其中,隔震橡胶支座(含天然橡胶支座、铅芯橡胶支座及高阻尼橡胶支座)能有效降低结构所承受的地震作用,被视为实现建筑隔震实用化的关键技术。
支承垫石处理:支承垫石需达到设计强度(下部结构混凝土需达到 75% 设计强度),表面平整、清洁、干燥,无起皮、起砂、开裂等问题;预埋螺孔需清理干净并涂抹黄油,采用黄油和油毡设置隔离层,为后续支座更换预留条件。

相关震害调查研究表明,采用隔震技术的建筑在地震作用下表现优异。具体工程案例显示,配备隔震系统的医疗建筑在强震后主体结构保持完好,内部设备运转正常,在灾后应急救援中发挥了关键作用,而非隔震区建筑则受损严重。
其隔震原理是通过支座的摆动,延长下部结构的自振周期,实现隔震功能。周期一般为桥梁固有周期的2倍以上,通常在2秒至6秒之间,以避免周期太大难以复位或周期太小导致梁体升高偏大。同时,通过滑动界面的摩擦消耗地震能量,实现减震功能。
对于隔震支座等特殊产品,进场时必须严格检查生产企业的合法性证明、产品合格证书、出厂检验报告和型式检验报告。
具有较好的自复位能力,质量中心和刚度中心重合,可消除结构因质心和刚心偏心而导致的扭转影响。
为了提高结构的抗震能力,在工程中设计隔震层,并采用减隔震技术。通过该隔震层,主体结构全部由叠层橡胶隔震垫托起,上部混凝土结构与基础底板完全断开,同时,设置粘滞性阻尼器以限制建筑物在地震作用下产生过大水平位移。隔震层内主要结构构件包括承台上支墩、阻尼器支撑吊柱、橡胶隔震支座及粘滞阻尼器等。隔震支座固定于承台上支墩上,利用支座的水平柔性形成一道柔性隔震层,从而吸收和耗散地震能量;阻尼器固定于吊柱与上支墩之间,根据流体通过节流孔时产生的粘滞阻力来消耗外部传来的能量;隔震层内各结构构件互相连接,形成整体的减隔震体系。
在冬季低温区(<-20℃),橡胶的性能会受到低温的显著影响,容易变脆、硬化,从而降低支座的可靠性。为了延缓橡胶老化,可在支座外部加装保温套,保温套能够有效地减少热量的散失,保持支座内部的温度,降低低温对橡胶性能的影响,延长支座的使用寿命 。
种原因的解决方法是:在吊梁前对梁体和墩台支承垫石进行检查,检查梁端底面与板式橡胶支座相关联处是否平整、两个板式橡胶支座相关联处是否平行。如不符合应即时修整,应杜绝落梁后使用填塞楔形块的解决方法。第二种原因的解决方法是:应在梁底钢板焊接与制造中解决。往往有部分施工单位为了节约成本忽略了梁底钢板的质量问题,直接用毛坯钢板作为梁底钢板或焊接锚固钢筋后不进行调整,因此引起了钢板弯曲变形。因为这些原因的存在使得落梁后板式橡胶支座产生压偏现象。
水平度控制:除标高必须符合设计要求外,必须确保支座在三个方向上的平面均达到水平状态,以保证受力均匀。
24小时咨询热线:
13323182312
QQ在线咨询:
839308866
微信号:
13323182312