橡胶支座的技术演进深度融合了材料科学与工程力学,其可靠性直接关乎建筑结构的安全性与耐久性。从板式支座的基础传力到隔震支座的前沿消能,规范化安装与周期性维护仍是保障长效运行的基础。未来,随着叠层结构与配方设计的持续优化,支座技术有望在极端荷载环境下实现更广范的安全防护。
压剪承载力定义为橡胶支座在特定水平变形下的竖向承载能力。在10-15MPa竖向压应力作用下,规范通常要求支座极限水平剪切变形达到350%时,仍不出现压剪破坏,这确保了支座在大震下的安全性。
近几年,发作地震状况对比多,对此,在修建构造计划上的抗震功能请求较高。经过进步修建物的抗震性和修建施工的进程采纳一些隔震减震的办法,能很好地削减修建物在地震中遭到损坏的程度。这篇文章对修建构造计划中运用隔震减震办法的研究具有必定的理论含义和现实含义。
现代隔震与消能减震设计通过将非线性、大变形集中到隔震支座和阻尼器上,既简化了结构分析方法,也提高了抗震设计的可靠性。隔震层作为关键环节,其设置位置多样,基础隔震作为广泛应用的技术,主要在基础与结构间安装橡胶弹性垫或摩擦滑动承重座等缓冲装置。
水平变形能力是衡量隔震橡胶支座抗震性能的另一个重要指标。通常要求设计剪切应变达到 250%,这意味着支座能够承受较大的水平变形。根据这一指标,位移量可以通过支座高度 ×2.5 来计算,以确保在地震发生时,支座能够通过自身的水平变形有效地吸收和分散地震能量。同时,为了保证建筑结构在地震后的正常使用,要求震后 24 小时内,支座的复位偏差≤5mm,确保建筑结构能够迅速恢复到稳定状态,减少地震对建筑使用功能的影响 。
检验合格后,应对铅芯隔震支座的连接板及外露连接螺栓采取专业的防锈保护措施,同时使用定制木框对铅芯隔震支座进行妥善保护,防止上部结构施工过程中对支座造成损坏。
板式橡胶支座板式橡胶支座凭借其独特的复合材料结构,在桥梁工程中应用极为广泛。
易于安装和维护:摩擦摆隔震支座的安装相对简单,且后期维护成本较低。

日常维护应包括经常清扫污水,排除墩台、台帽积水,防止橡胶支座接触油脂。对梁底及墩、台帽上的残存机油等污染物应及时进行清洗,保持支座工作环境清洁。
层间隔震技术已成功应用于多层商场与高层住宅组合的建筑中,隔震层同时承担转换层与设备管道过渡层的功能,实现结构安全与使用功能的统一。
待下支墩混凝土达到75%设计强度后,将橡胶隔震支座按型号分类摆放,利用塔吊将支座吊至相应的支墩上,然后使用葫芦吊和简易钢架吊起支座并安装到位。并将预埋件螺孔清理干净,涂上黄油。用高强螺栓将下连接板牢固地与下预埋板连接。高强螺栓的拧紧过程应分为初拧、复拧、终拧三个阶段,并在同一天完成。螺栓连接时,严禁用锤敲打等破坏方法强行穿入螺栓,另外要保持构件摩擦面的干燥,严禁雨中作业。
目前,建筑隔震设计中较为普遍采用的方法是弹性反应谱法,这种方法被大部分采用,但有不同的规范,主要有美国的、日本的和欧洲的规范,它们之间区别不大,主要在于计算公式的不同,这些计算公式是指隔震装置等效刚度的计算和和等效阻尼的计算,与之相对比,那些复杂性强或较为不规则的建筑,较为常用的方法是时程方法。
建筑摩擦摆支座的隔震效果受以下因素影响:
安装时需特别注意四氟板表面的清洁处理,储脂槽应充分填充硅脂。同时,配套钢板表面也必须保持洁净,以避免增加支座摩擦力,影响其正常使用性能。
硫化工艺控制:硫化过程中的时间与温度参数至关重要。不同规格的橡胶支座需要匹配相应的硫化时间,若未能达到规定时间,将导致内部胶料硫化不充分而形成"夹生"现象,严重影响产品最终质量。
支座承载力需根据建筑恒载、活载的支点反力之和及墩台支座数目综合计算。设计时需遵循以下原则:

对于盆式橡胶支座等特殊类型,在安装前应注意对滑动组件表面的保护,避免划伤或污染,同时检查润滑材料是否填充充分。
生产阶段:针对支座规格多样、非标产品常见、形状系数差异大的特点,需采用差异化配方设计,确保不同类型支座的力学性能均达标;从原材料进厂到产品检测出厂,需建立全流程质量管控机制。
盆式橡胶支座:通过密闭于钢盆内的橡胶块承受压力,利用盆环与中间钢板间的滑动实现水平位移。其承载力高、转动性能佳,适用于大跨度桥梁。安装时需注意焊接操作防止烧坏混凝土,锚固螺栓外露高度应不大于螺母厚度。
铅芯橡胶隔震支座:在普通橡胶支座中心压入铅芯构成。铅芯具有良好的塑性和能耗能力,能在地震时通过塑性变形大量消耗地震能量,起到显著的减震、隔震效果。此类支座已被纳入国家《建筑抗震设计规范》,在全国乃至国际范围内得到广泛应用和专家肯定。
经营范围:【材质鉴定】:胶种材质材料测量检测,提供材质化验报告,时间短,花费少,精度准【检测】:通过分析仪器分析橡胶成分,参照谱结果,由塑料研发专家还原物质,并提供供应商参考【模仿生产】:参照所提供的样品的性能模仿生产,或者参照提供的性能参数设计产品,如伸长率、抗撕裂强度、抗氧化性能等【故障分析】:解决产品出现的质量故障,如喷霜、喷霜、硫化时间过长等问题,从样品成分以及助剂的增添角度解决问题微谱技术优势:一、NMR分析、质谱仪、IR分析仪、质谱仪、X荧光光谱等,仪器整套;二、[$Z专家团队,经验丰富,还原程度高Z$];三、具备CMA认证资质,拥有全面的产品谱库,几乎能够鉴别市面上所有的橡塑高分子目前为止,平均每2天就有企业借助橡胶支座成分检测技术开发橡胶支座。
能量吸收能力:LRB500支座中的铅芯能够在地震时吸收和耗散大量的地震能量,从而减轻建筑物受到的地震冲击。
摩擦摆隔震支座具有以下优点:隔震效果好、适用范围广、可靠性高、易于安装和维护。
现代建筑“基础隔震”概念的基本原理是在建筑物上部结构与基础之间设置安全可靠的隔震柔性底层,使建筑物与基础隔开。这样,支撑在隔震系统上的整个建筑物在地震时便具有较大的剪切变形能力,使地震的各种破坏力对上部建筑物的直接拉力降至小,减小上部结构的地震反应(一般可减小至1/5左右),确保建筑物在任何突发强地震中不被破坏和倒塌,是一种立足于“隔”的以柔克剐、以隔减震的积极抗震的方法。可以说,从“抗”到“隔”,是抗震设防策略的一次重大改变和飞跃。

结构保护系统没有足够的安全储备。显然,在对这座建筑进行隔震产品的设计过程中,并没有考虑到高架桥将承受到如此大的地震动作用,致使整个隔震系统遭到了完全的破坏。然而,意外的超荷载情况时有发生,在建筑构造设计中必须充分考虑,并采取必要措施才能满足人们对建筑的使用安全要求。显而易见,连上述各项设计指标都不能满足,就更谈不上安全储备。
更为重要的是,对于重要或特殊的工程结构,隔震结构明显优于常规结构体系,可以处理后者难以解决的问题(诸如对室内重要设备或非结构构件的保护、地铁车辆段上部空间的开发使用等,此类问题共同之处在于降低结构的设防烈度,而常规结构体系无法实现这一点)橡胶支座上下各有一块连接钢板,连接钢板通过高强螺栓与预埋钢板连接。
位移方向:板式橡胶支座安装时,其短边应平行于顺桥向;如需长边平行于顺桥向,必须进行转向确认。
板式橡胶支座是由多层薄钢板与多层橡胶片硫化粘合而成一种普通橡胶支座产品,这种产品具有足够的竖向刚度,能够将支座上部构造的反力可靠的传递给墩台,支座具有良好的弹性,以应对建筑的梁端的转动;又有较大的剪切变形能力,以满足上部构造的水平位移。
设计优势:原理简单,摩擦摆隔震建筑可简化为单摆模型,其摆动周期只取决于等效曲率半径,与建筑物重量无关;设计时无需考虑隔震层扭转变形,从隔震结构的剪重比可以直接估算出摩擦系数取值;选型简单,变形量和竖向承载力无耦合关系,确定摩擦系数和等效曲率半径后即可进行分析,支座选型仅与分析结果相关,无需根据选型结果重新计算。
设计转角:支座的设计必须考虑梁体在荷载下发生的转角。若支座总厚度增加,可能导致其抗压弹性模量增大,从而使竖向压缩变形减小,此时需按不脱空条件重新校核,这可能会降低设计允许转角值。
砌体结构无筋扩展基础应绘出剖面、基础圈梁、防潮层位置,并标注总尺寸、分尺寸、标高及定位尺寸。砌体结构有圈梁时应注明位置、编号、标高,可用小比例绘制单线平面示意图;砌体墙的材料种类、厚度、成墙后的墙重限制;砌体墙上门窗洞口过梁要求或注明所引用的标准图;砌体填充墙与框架梁、柱、剪力墙的连接要求或注明所引用的标准图;千斤顶、百分表安放与设置千斤顶数量应与每个桥台下的支座数量相同。
建筑使用隔震技术,施工时增加了隔震层的施工,比常规建筑增加了施工时间。但采用隔震技术后上部结构构件配筋减少,钢筋制作难度减小,建筑材料节约,制作人工减少。对隔震和非隔震建筑施工时间进行详细对比结果表明,总工期没有明显增加。
24小时咨询热线:
13323182312
QQ在线咨询:
839308866
微信号:
13323182312